Александр ШАБАНОВ, Павел КАРИН ("Авторевю")
Зачем свече зажигания несколько боковых электродов? Ведь сколько бы их ни
было — два, три или четыре, — рожденный в недрах катушки высоковольтный импульс
вызовет одну-единственную искру, которая «выберет» только один из боковых
электродов. Так, может быть, это просто элементарная уловка маркетологов — мол,
чем больше электродов, тем дороже?
Мы решили это проверить. И, завершив испытания одноэлектродных свечей
зажигания (см. АР № 22, 2004), повторили тест с более дорогими свечами —
многоэлектродными. А основным испытательным стендом, как и в прошлый раз, стал
вазовский восьмиклапанный двигатель ВАЗ-2111 со впрыском топлива и контроллером
Январь 5.1.
Принципиальные схемы развития фронта пламени для одноэлектродных (а) и многоэлектродных (б) свечей. Во втором случае из-за «открытого» искрового зазора сгорание смеси начинается интенсивней, чем в первом — фронт пламени одноэлектродной свечи теряет время на выход из межэлектродного пространства
На самом деле, преимущество многоэлектродных свечей давно известно — это ресурс. Ведь искра возникает между центральным и боковым электродом в том искровом зазоре, электрическое сопротивление которого в данный момент меньше, чем других. А поскольку сопротивление каждый раз изменяется, то искра «грызет» электроды поочередно. Взгляните, к примеру, на фотографию разряда свечи Bosch, сделанную при большой выдержке. За время съемки произошло около 50 разрядов, искры от которых равномерно распределились между всеми тремя боковыми электродами. Это, кстати, говорит о том, что все три зазора здесь примерно одинаковы. Но даже если это не так и искра бьет только в один электрод, то со временем она его «сгрызет» — и перекинется на соседний, тем самым продлевая срок службы свечи.
Правда, многоэлектродные свечи дороже обычных. И поэтому автопроизводители применяют их только в тех двигателях, где за ценой можно не постоять. Например, в моторе редакционного седана BMW 320i, который эксплуатировался у нас в 1998—2002 годах, стояли четырехэлектродные свечи NGK, которые без проблем отслужили положенные 100000 км.
Но в ходе короткого теста ресурс свечей мы, к сожалению, проверить не в состоянии. Зато мы можем узнать, насколько изменяется мощность, экономичность и токсичность выхлопа у вазовского мотора при работе с разными свечами. А то, что замена свечей влияет на работу двигателя, это факт — в ходе предыдущего теста одноэлектродных свечей разница в мощности достигала почти 6%!
На этот раз комплектов свечей — всего семь. Это чешские свечи Brisk Extra и Brisk Premium, немецкие Bosch и Finwhale, французские Beru, японские NGK и свечи Champion, сделанные в Евросоюзе. Отечественных многоэлектродных свечей мы не нашли.
Первым делом все свечи отправились в барокамеру — для проверки на бесперебойность искрообразования под давлением. Из-за того, что барокамера заполнена не топливовоздушной смесью (взрывоопасно!), а воздухом, и напряжение, подводимое к свече, понижено со штатных 22 до 17 киловольт (имитация экстремальных условий), эти испытания — лишь дополнительный тест. Однако проведя его, мы сможем не только сравнить разные свечи в одинаковых условиях, но и отметить влияние «дополнительных» электродов. А оно есть!
Например, если одноэлектродная свеча Bosch WR7DC дает пропуски искры при давлении воздуха в барокамере в 8,1 атм, то ее трехэлектродный «собрат» Bosch W7DTC продержался вплоть до 10,0 атм. Аналогичная картина и с другими комплектами — свеча NGK BUR6ET с тремя «массовыми» электродами стабильно искрит при давлении воздуха до 10,4 атм, а одноэлектродная свеча NGK BPR6E сдается уже при 8,9 атм. О чем это говорит? О том, что дополнительные «массовые» электроды увеличивают надежность искрообразования. Это подтвердилось и при замерах давления полного прекращения искрообразования. Лучший результат трехэлектродных свечей (Brisk Extra, 12,5 атм) чуть превосходит результат лидера среди одноэлектродных комплектов (Brisk LR15YC, 12,0 атм). У других свечей разница заметней — например, трехэлектродные свечи Bosch теряют работоспособность при давлении воздуха в барокамере в 11 атм, а одноэлектродные — уже при 8,4 атм.
Надежность искрообразования зависит не только от количества, но и от расположения боковых электродов. Взгляните на фотографию свечи Brisk Premium LOR15LGS. Ее «массовые» электроды расположены настолько далеко от центрального, что давления воздуха даже в 5,5 атм достаточно для полного исчезновения искры. По испытаниям в барокамере эти свечи проигрывают даже штатным одноэлектродным свечам ЭЗ А17ДВРМ! Слишком велико сопротивление зазора — и пониженным напряжением в 17 кВ его не «пробить». Но, конечно, условия, которые мы имитируем в барокамере — это крайность. Такое бывает, например, у автомобиля со слабой батареей в дождливую погоду, когда включены фары, стеклоочистители, обогрев стекла, а влага, попавшая на высоковольтные провода, увеличивает токи утечки...
Так что главное испытание — это моторный стенд. Каждый комплект свечей мы поочередно заворачиваем в восьмиклапанный двигатель ВАЗ-2111 с распределенным впрыском (контроллер Январь 5.1 2111-1411020-61, лямбд-зонд, без нейтрализатора), соединенный с нагрузочным устройством. Нет нагрузки — двигатель работает на холостом ходу. Повышаем нагрузку — измеряем «частичные» характеристики. Полная нагрузка — номинальный режим. Фиксируем крутящий момент двигателя, частоту вращения, расход топлива и воздуха, токсичность отработавших газов. А чтобы исключить даже минимальные изменения давления, влажности и температуры в лаборатории, где установлен нагрузочный стенд, все полученные результаты приводим к стандартным условиям по методике ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний». База для сравнения — характеристики мотора при работе со штатными одноэлектродными свечами А17ДВРМ из Энгельса.
Сперва — газ в пол! На режиме полного дросселя мы замерили крутящий момент (и мощность) двигателя с каждым из комплектов свечей. Здесь, как и среди одноэлектродных свечей, отличился комплект Finwhale. С этими свечами двигатель развил на 6,3% большую мощность, чем со штатными одноэлектродными свечами ЭЗ А17ДВРМ — и на 0,4% больше, чем с одноэлектродными свечами Finwhale F510 (5,9%). Также в тройке лидеров — свечи Champion (+5,6% мощности) и Brisk Premium (+5,1%). А вот трехэлектродный Bosch выступил скромно — прирост мощности составил всего 2,6%.
Затем, сбавив обороты, мы измерили экономичность двигателя в режиме городского цикла. Интересно, что превзойти результат одноэлектродных свечей NGK (снижение расхода топлива относительно штатных свечей ЭЗ на 5,1%) не удалось ни одному из комплектов. Но в целом многоэлектродные свечи выступили стабильнее — снижение расхода топлива более чем на 3% обеспечивают четыре из семи комплектов: Beru (4,2%), Champion (4,1%), NGK (3,9%) и Bosch (3,2%). А вот чешские свечи Brisk Extra расход топлива в сравнении со штатными ЭЗ не снижают, а увеличивают — на 1,6%.
Неудача постигла свечи Brisk Extra и при замерах токсичности отработавших газов, которые мы проводили на холостом ходу, в режимах городского цикла и внешней скоростной характеристики. Эти свечи, как и одноэлектродный Bosch WR7DCX, заставили контроллер Январь 5.1 работать в режиме постоянной коррекции времени впрыска топлива, переобогащая смесь. Как результат — «неуд» по экологии. В чем причина — неужели тоже пропуск вспышек?
А лидируют по снижению токсичности четырехэлектродные свечи Beru. За ними — Brisk Premium и NGK.
Как водится, результаты всех испытаний мы перевели в баллы и просуммировали их с учетом весовых коэффициентов. В группе лидеров итоговые баллы легли очень «плотно» — как и при тестах именитых шин. В принципе, мы смело рекомендуем все свечи, кроме аутсайдеров Brisk Extra LR15TC. Кстати, если сравнивать с результатами теста одноэлектродных свечей, то лучшие из них (это NGK) смогли бы занять в общем зачете только четвертое место. А это означает, что «дополнительные» электроды влияют не только на ресурс, но и на такие характеристики двигателя, как мощность, экономичность и токсичность.
Кстати, самых выдающихся результатов многоэлектродные свечи достигли в снижении токсичности: если Eyquem, лидер среди одноэлектродных комплектов, показал 40-процентное снижение содержания СО и СН в выхлопе, то Beru Ultra-X — уже почти 60%! Это говорит о том, что «многоэлектродность» и связанная с этим надежность искрообразования особенно ярко проявляют себя на режимах частичных нагрузок (на которых, в основном, мы и проверяли показатели токсичности). Но ждать от многоэлектродных свечей каких-либо чудес не стоит.
Однако процессы воспламенения горючей смеси от искры до сих пор хранят немало тайн даже для серьезных исследователей — и, само собой, привлекают внимание изобретателей и инженеров-самородков. А что, если распилить боковой электрод пополам? Или приварить к свече конус — и назвать получившееся чудо «плазменным генератором»?
Подобные свечи имеются на прилавках в изобилии. Мы встретили немало
оригинальных конструкций — свечи «с форкамерой», с распиленным или просверленным
боковым электродом. Попалась даже свеча зажигания с центральным
электродом-осьминогом — искрит, как горелка газовой плиты!
Все эти свечи мы тоже испытали. И получили весьма любопытные результаты.
Но об этом — в следующий раз...
Результаты испытаний. Многоэлектродные свечи зажигания |
|||||||||
Влияние на общую оценку | Beru Ultra-X 79 | NGK BUR6ET | Champion N9BYC4 | Brisk Premium LOR15LGS | Finwhale FX510 | Bosch W7DTC | Brisk LR15TC | ЭЗ А17ДВРМ | |
Испытания в барокамере | 10% | ||||||||
Давление нарушения искрообразования | 4% | 8,1 | 9,9 | 5,8 | 5,1 | 6,3 | 9,5 | 9,7 | 5,0 |
Давление прекращения искрообразования | 6% | 8,6 | 8,9 | 5,7 | 5,0 | 6,1 | 8,9 | 10,0 | 5,7 |
Стендовые моторные испытания | 90% | ||||||||
Мощность | 30% | 8,0 | 8,5 | 9,4 | 9,1 | 10,0 | 7,1 | 8,8 | 5,0 |
Экономичность | 24% | 9,3 | 9,1 | 9,3 | 8,4 | 6,7 | 8,5 | 5,0 | 6,2 |
Токсичность | 18% | 10,0 | 8,1 | 7,8 | 8,1 | 7,8 | 5,6 | — | 5,2 |
Устойчивость работы | 18% | 9,4 | 9,8 | 9,4 | 10,0 | 9,8 | 10,0 | 9,0 | 7,9 |
Общая оценка | 100% | 9,0 | 8,9 | 8,7 | 8,5 | 8,4 | 7,9 | 6,5 | 5,9 |
*Для сравнения в таблицу включены результаты штатных одноэлектродных свечей ЭЗ А17ДВРМ |
Все комплекты свечей мы поочередно заворачивали в двигатель ВАЗ-2111, установленный на динамометрическом стенде. Режимы работы двигателя задавали с дистанционного пульта управления: крутящий момент с точностью до 0,5 Нм, а частоту вращения — с точностью до 10 об/мин Температуру, давление и относительную влажность воздуха в лаборатории при расчетах мы приводили к стандартным значениям: B=750 мм рт. ст., Т=25°С, ф=36%